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A nonstationary three-dimensional problem on the motion of an isotropic elastic 

medium in the presence of a crack along the half-plane is considered. Instant- 
aneous concentrated normal and tangential pulses act at the initial instant on 

both edges of the half-plane. The solution for the time-periodic problem is de- 
termined by the Wiener-Hopf method, which was applied in the theory of wing 

vibrations [l] although the process of solving (and formulating) the problem in 
[l] differs from the course of the solution in this paper. Fur~ermore, an inverse 
time transformation is carried out which permits finding the solution of the non- 
stationary problem in the whole space at once, in the Smirnov-Sobolev form. 

The problems of unsteady motion of an elastic continuous medium have been 

considered in [Z- 51. The solution of a number of mixed dynamic problems for 

a liquid or elastic medium is given in [I, 3, 6, 71. 

1, The equations of motion in displacements for an isotropic medium in the absence 
of body forces in the three-dimensional case are 

asv/ats = (us - bs) VB + b*Vsv, 8 = vv, v = {q, v,, us} (1.1) 

Let us initially consider the following time-periodic singular boundary value problem 

for a ~rni-~f~i~ slit (2 = 0, - 00 ( (oo > I 

Q zz = 8 [(a2 - 2b2)f) + 2bzg] = F%(x+ q)&(y + yo)exp(- iot) (1.2) 

?!<9, 0s == 9 7 Y>O 

cxz-pbz(J?$-+$) =Qs(3:+~~)6(y~~~)exp(-_iot) 

M<Z/.<OO 

5Uz=pbS($+$) =V&(2+~~),)6(y+y,)exp(-_s’wt) 

m<?/<@) 

vi, 2, s = 0 (R?), R1 = dg* + za -+ 0 (condition on the edge) 

Here X0, y. are Positive constants, 8 (z) is a delta function, p is the density of the 
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elastic medium and P, Q, V are constants. because of the boundary conditions, it is 
possible to consider a symmetric problem with respect to the &Y plane, where q, s 

are even and ‘lia is an odd function, and to pose the problem for the half-space z > 0. 
Let us seek the solution of the problem (1.1). (1.2) in the form 

Vj = Vj" (2, y, 2) exp (- iOt) 
2 00 

* Vi” = 
2 ss 
?I=1 -m 

A; exp (iax + ipy + iq,,) dudf3 

(1.3) 

Ata’ = - -?& TlT2Al” -$!iB, A= Q W - P*) + v@ 
2 4n2pb% 

@) = 2 ta2 + @‘32) 
aC 

rlAp’ + i (Qa + WI 
4SpbaC 

B = ~(r22-~2)+Q~P 
4+pb”y2 ’ 

C = ~~2 - a2 - fj2 

7, = l//c+ ci2 - $2, kg = f , 

q. = exp (i&z0 + i&) 

(A,(l) (a, fi) is an unknown function). 
It is assumed that slits along the real axis from - 00 to - l/k2 - as and from 

l/k2 - cc2 to 00 are introduced for 1 a 1 < k (a is considered real), and y > 0 is 

selected on the imaginary fi -axis, while slits .are made in the plane of the variable p 

for 1 cz 1 > k which connect points & i I/cc2 - l? of the imaginary axis to the point 

f ioo , respectively, and Im y > 0 is selected on the real fi -axis. 

The solution in the form (1.3) satisfies (1. l), the boundary conditions orzo= Q6 (z + 

ZO) 6 (Y f YO) and avzo = V6 (5 -i- so) 6 (y i- !_I,) for Z = 0. The remaining 
boundary conditions and the conditions on the edge determine the function A,@). 

Substituting (1.3) into (1.2). we have an equation for z = 0 , which reduces to the 
Wiener-Hopf equation after an inverse Fourier transformation and elimination of Al(l) 

2ib2ae2 (a2 - b2) r2+F+U+ + fl (a, f3) = TG_ (1.4) 

,‘J+ = _!- T &; ’ 
/tn= ,\ s 

(L.C)~=~ exp [- i (ax + :3y)] dy 
--co -m 

= jl+ + II-, j s j'Q. V) _t 

,tp,= (Qz + Q, (C - 2~172) - P-M2 

4nBpk2%+X (a, p) 



498 A. N. Martirosian 

Upon factorization of the functions, the cases 1 a 1 < k and I cc ) > k are consi- 
dered separately and it is shown that for arbitrary a 

F (a, P) = k* ( a2 + P” + &) = (1.5) 

F+ (a, p) F- (a, ;3), rj = rj+rj- 

p+ = V”1;<;*3 exp [&n K rldll 

2 Ti (rl) ( f/r;2 - 32 - 8) V-n3 - 9 1 Tfl 
li' = (J/$2 - a2_t $)f$ qR = $, CR <b 

(fi (q) is the Rayleigh function, sjn is the root of the function K (q)) and either the 
upper or the lower signs are selected simultaneously, where the functions 7/j-, I;- and 
yj+, F+ are, respectively, analytic in the lower and upper half-planes of the complex 
variable fi. 

It can be shown that for any real Q: 

0 (a, 11) = exp [i (as, -t- y. V-q” - a”>1 

(X+ (a, q) are the upper boundary values of the function 4y (a, 7) on the section 

kl < 7 < h-2). 
Solving the Wiener-Hopf equation, we obtain 

2b2 (kz2 - k12) y,+F+lJ+ = ikz2 [J1 (a, fi) - jl- (CL, fi)j 

YI-Q- = X (a, B> (V-w2 - f2 - 13) fl- (a, (3) 

Since U+ = ASP) + LI,(~‘, we obtain 
000 

(1.6) 
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r-- 

b2R (a, /rl)y,-A$tj = - aC (1/ q~” - a2 - p) X (a, j3) 

R (a, B) = C2 + 4y,y, (a” + B”) 

After evaluating the remaining coefficients by using (1.3) and (1.7), we arrive at the 
solution of the problem posed, which is time-periodic 

2 OD 
vp = 2 ss i [A:! j exp (i~pg’) + G A$ X 

n,m=r -CO 
(1.8) 

‘pi(n) = (5 + x0> a + (Y + ,vo) B + a7 CpP) = 
(x + x0) a + YB + vn + yoh2 - a2 

Q@) = (2 -k x0) a -I- YB + zy, + yoVq2 - a2 
n=1,2; j=i,2,3 

2. The inverse transform in t corresponding to the solution of the nonstationary proby 
lem for which there is 6 (t) instead of exp (- iot) in (1.2), is 

0+iCO 
1 

Vj = 2ni 
s 

Vj” exp (A) ds, s = - ~CO 
(2.1) 

a-i00 

In applying the inverse Laplace transform in t ? we introduce the variables a -- 

SW cos 9, p = cw sin ‘II, [8] in place of a, p and the polar coordinates z + x,, = 

r cos Cl,, y + y, = r sin 0,, x0 -t_ x = p cos 8, y = p sin 0 for @) and ‘p!$ , 
respectively. 

The neighborhoods of the points 5 = cm@) for which the expressions in the exponen- 
tials vanish 

(2.2) 

are essential in the integrals with respect to 5 . 
For definiteness, let us consider the first integral 

Here, the o has been divided out because of homogeneity. Let us replace the quantity 
9 in the integral with respect to 9 taken between n < $ < 2n by n -i- $1. Then the 

coefficient of j in fr o) (5) changes sign, where by discarding the subscript on the qi, 
the integrals with respect to $ and $1 taken between the limits 0 < q~ < n can be com- 

bined and 6 can be replaced by - 5 in the second integral. Then 
a+im x 03 

Let o > 0. Let us replace the contour of integration - 00 < 5 < CO by contour I 
passing through the mentioned point c1 (I), g(‘-’ in the direction Im frt” (6) = 0. Using 

the notation fro’ (5) = B,, where B, is real, 5 = 5 + ip, it can be seen that the lines 
fro) (5) = B, in the (E, p) plane consist of two branches of the hyperbola 
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42 P2 1 
raCos2$ -,z=w, rlz==r2cos211,fz2 

aswellasofsegmentsoftherealaxis lEI<lla. 

Let z > 0. Then assuming that l/au2 - 52 > 0 on the imaginary axis of the i-plane, 
it can be shown that Im fr”’ (6) < 0 in regions (see Fig. 1) where arcs of circles cl, C, 

pass, the signs of the Im fr(l) are 
indicated in the different regions 

in the figure. Then the integration 

with respect to 5 between - w 
and r cos * / (ml) is replaced by 

~ntegra~on over the upper half of 

the contour r, while integration 

with respect to 5 between r cos 9 / 

(orI) and DC is replaced by integ- 

ration over the lower half of l?. 
This can be done since 

Lm A(r) (5) < 0 

Fig. 1 

on rr, c, and it can be shown 
that the integrals over cl, ca tend 
to zero as the radii of the circles 

cl, c, increase wi~out limit. 

Consequently, for o > 0 the ~tegration over the real g-axis can be replaced by in- 

tegration over r. 
For o < 0 their complements to the upper and lower semicircles on which Im fr@)x 

(5) >o are taken, respectively, instead of cl, c2 . Then integration over the real 5 - 

axis is replaced by integration over r in the direction opposite to the preceding, The 

inner integral in (2.4) is obtained exactly the same as for o > 0 , taking sgn 5 into 
account. 

For z 4 0 the points &(r), z(r) exchange places but the solution does not change. 

Thus for any o, z we obtain from (2.4) 

where the upper and lower signs refer to the upper and lower halves of the contour S, 
which passes from top to bottom. The quantity B, varies between - 03 and r cos 41 I 

(ml) on the upper half of T and between r cos 9 / ar, to - 00 on the lower half, after 
an inverse Laplace transformation with respect to t, we obtain by evaluating the integ- 
ral of the delta function of the real argument jr(“) (5) 

The solution is I = 0 for t < r1 / a. 
Note that the upper and lower edges of the slit ( 2 1 i a, r coslc) / rl) passing from 

right to left and left to right, respectively, should be included in the contour I’ for 

ur 1 cos -+ ] > rl for a transverse wave with 6tr > br,, which corresponds to the domain 
outside the cone passing through the line of tangency of a point and side wave. The 
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solution is again written in the previous form in terms of roots of Eq.(2.2), where points 

between the mentioned waves correspond to the mentioned slits. 
The Rmaining integrals are calculated similarly. 
The solution is finally written as follows: 

(2.5) 

where H (St> is the unit function. The relationships ,$!o = 0, co(n) = 0 yield the 

fronts of the corresponding waves, 
Note that for zO = y. = 0 the terms corresponding to P in the solution drop out. 

This is seen at once from (1.5) which becomes 

2ibaaWa (a2 - ba) ‘ra+F’Uf = 4nsp~_Tz- -I- & (2.61 

for x0 = y. = Q = V = 0. 

Hence,if~tis~umed,~ above&hat ‘~1.23 = 0 @I?, then U+ s 0 is obtained, 
i.e. the trivial solution. Since it is clear that the solution should depend on P, it is 

natural to assume that the terms corresponding to P in the solution will yield ?I, s,s = 
0 (I?,-“*) as R, --f 0; then for these terms both sides of (2,6) should be equated to a 
constant determined by using the Cauchy theorem, and finally the solution for P becomes 

U* = aaR (a) [2b2 (b2 - a”) F’yz+)-l, $I- = K (a) f;-rz- - -& 

K (a) = P pia-cv--(a, 0) ~p=&q-l 
Then the complete solution for 5 o = yO = 0 is given by formulas following from 

(l.?)in which x0 = y, - p = 0, and moreover, terms in Ati should be added 

4napbzR (a. p) X (u $0) YI- Ifq$ - c@ 
(2.71 

Note that for x0 = y, =t: 0 in (2.5) values corresponding to the range of integration 

1 / a < ‘tl < 1 / b will be different from zero in the integrals with respect to 71, 
where the same expressions are obtained for cp and f as above, in which P = 0 has 

been substituted. 

3. In order to obtain the solution near the waves, let us apply the method of [9]. For 
simplicity, we consider the problem in which z = y, = 0, and we have three kinds 
of waves: point spherical longitudinal and transverse waves and a conical wave which 

is the envelope of the point transverse waves producea by the intersection between the 
longitudinal wave and the z = 0 plane. 

To determine the solution near point waves with the propagation velocities c,,where 
c1 = a, c2 = b, we introduce a new variable of integration o = j’1 - bus&,* 
according to [9] by using (2.2). where x0 = go = 0. Hence 

cosq = 
ten - ZQ 

sing = 
R v/(a -61) (as - a) 

r 1/1- r Jfl-@ 
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R = r2 + z2, R”& = tzc,_t r r/R” - t”cn2 

On the fronts of the point waves o,@) - a,@‘) = as@) = tzcRR-a, and we replace 

the contour of integration in the o-plane by a small segment connecting the points 

uI(“), o,@) [9] in determining the solution near the waves by the Cauchy theorem and ” 
by evaluating the integral, we obtain near the point waves 

where A$‘!i are given by (1.7) taking (2.7) into account. 

To determine the solution near the conical wave with the equation 

t = tf = (r sin p -+ z cos /3) i b, cos p = y = faa - ba f a 

(p is an angle measured from the z-axis in the vertical plane, corresponding to the 

tangent circle of the conical and point transverse waves), the relative location of the 

points o = c$ and 6 = y on the real a-axis should be studied. For points M (5, y, a j 

ahead of the conical wave we have y < G,, i.e. a slit in the u-plane corresponding 

to branch points y, a, of the integrand lies outside the contour of integration, For points 

All (a, y, z) behind the conical wave, the value of the integral in the o-plane can be 

replaced by integrals over the edges of the slit (or, y), where or < y. Then we obtain 

the solution near the conical wave 

(3.2) 

L = r cos fi .- z sin p. An ein f3 = b ftr - t), btf = r sin fl -I- z eos p 

Near the tangent line of the waves I z 0 and (3.2) is not applicable, but as in [9]. 

the solution can be obtained in the neighborhood mentioned, 

Therefore, the solutions (3.1) and (3.2) near the point and conical waves have been 

obtained from the general formulas (2.5) in the case when the force is concentrated at 

the point (0, 0, 0). 
The principal terms in the stress intensity coefficient and in the value of the displace- 

ment us near z = 0, y = f 0 can be obtained from (2.5) - (2.7), respectively, as 

p* = [(b-2 - 1’2) h2 - T2 (1 -c_ z;l>r+, 

7’ ? b-1, .c :: r ens 0, y .-_= r sin G 
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We have T > 1 near the point x = y = z = 0 and we obtain 

Note that the fundamental part of the singularity near the edge corresponding to P 
has been extracted, where the terms in ozz and us corresponding to the transverse loads 
Q and V yield the singularity 1 0 I- ‘/: and 1 8 1’12 , respectively, i.e. the smoother 
terms in the solution. 

Let us study the domain near the front for waves reflected from the edge z = y = 0 
in the general problem in which I,, # 0, y,, + 0. The terms containing Ar/ in the 
solution (2.5) correspond to incident longitudinal and transverse waves, i.e. to the Lamb 

solution for the half-space. The solution for the neighborhoods of the mentioned waves 
are found by calculations similar to the calculations to obtain (3.2), and has the same 
singularity in the form of a &function. 

It is more complicated to obtain the solution for waves reflected from the slit edges, 

to which the remaining terms in (1.8) correspond, where Y, VT? - CG is the time at 
which perturbations given by the integrands in the integral with respect to n originate 

at the point (-zO, 0) . Hence n has the meaning of velocities of perturbations arriving 
at the point (- x0, 0) and generating reflected waves. Therefore, it is necessary to de- 
termine the behavior of terms containing integrals with respect to n in (2.5) in the 

neighborhood of the waves. We note that the fronts of waves reflected from the edgecan 

be obtained from the equation of the envelope of ” plane” waves 

(3.3) 

Henceforth, the subscript 3 is discarded for brevity, 11 = 1 / a corresponds to waves 

generated by an incident longitudinal wave, and q = 1 / b by transverse wave. Note 

that two waves (longitudinal and transverse), produced by longitudinal and transverse 
waves incident on the edge, correspond to the mentioned integrals with respect to n , 
which is due to the discontinuous nature of ‘p,,’ and it is possible to write in (2.5) 

Let us first consider terms corresponding to the first integral in the right side of (3.4). 
Let g,,tn), Cot”’ denote the quantities $, 5 given by the mentioned wave equations 
(n = i / a) . We introduce the variable o = v/1 - ~~252. It is possible to consider 

$,, <Q < ?‘o i- 2n for the limits of integration in polar coordinates in the solution 

(1.8) and +,, < ‘II, < $0 + x in (2.5). Then, repeating the discussion carried out in 

obtaining (3. l), we obtain for the mentioned terms in (2.5) near the waves 
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We discard the superscript R in the intermediate calculations, then we can write o, =: 

(I f$& u2 = o (x -t $01 and 5 {q) is given by the equation f = o. Hence, it is seen that 

C ($0) = -C(Jr + $01, CJ (@“) = 15 (JE +- $,:) 

where the bar denotes the complex-conjugate value and or,% = (T,,, cc0 = r/i - Q. 

on the wave. 
Near the wave we can assume 

According to equation f (0, 4) = 0 we have 

yo If@ - 50” cos~~o 
Here t = t/ is the equation of the wave (3.3) for 9 = u-1, azf I &p > 0, K, > 0. It 
can be shown that 

5 r,z=“flfi [ 

2 azf ‘It 
--(t-q -YOP) x0 a+2 1 

Evaluating the integral in (3.5) and repeating the discussion presented above for the 

second terms in the right side of (3.4), using the notation p = v/s2 - a* - V-b+ - a2 

near the waves reflected from the edge, we obtain 

Here TO@) are values of 6’“) in (3,3) on the fronts of waves generated by an incident 
transverse wave on which 71 = b-r and ff (*j are equations of the mentioned wave fronts; 
I&@(@ = (r __ fp$&-l z 0, pp z= (1 _ ~fwfy~-l N, 0 near the appropriate wave fronts. 

In obtaining the last formulas yielding the sot&ion near the waves reflected from an 
edge it has been taken into account that &LO@), Po”(nf should replace the upper limit 00 
in the integrals with respect to p since for t < tf(‘), t < F!(n) there are no reflected 

waves at this point, 
As is seen from (3.6), the solution near the reflected waves is smoother than a solu- 

tion of the ~-unction kind behind the incident waves. The exception is the solution 
near waves reflected from the edge during Rayleigh wave incidence and given by faCn’ 
in (2.5), behind which the singularity in the solution is again a &function. 

It should be noted that for z-O = y, = 0 the inversion of the Laplace transform can be 
obtained also by the method in [lo]. 

The author is grateful to A, G. Bagdoev for formulating the problem and for valuable 
comments. 
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A method is proposed to solve the problem of impressing a rectangular stamp 
with arbitrary ratio between the sides into an elastic isotropic half-space, based 
on reduction of the problem to two-dimensional dual integral equations. A me- 
thod of reducing these equations to an infinite system of linear algebraic equa- 

tions is indicated. Formulas are obtained to determine the pressure on the con- 

tact area and the displacement of the stamp. 
The papers [l- 41 have been devoted to contact problems for a rectangular 

stamp. The problem of impressing a stamp with a base in the form of a narrow 
rectangle into an elastic half-space has been studied in [5 - 73. 

The method of solution used in this paper is a further development and exten- 
sion (to the case of two-dimensional dual equations) of the method used in [7]. 

1. We use a rectangular 5, ~1, z coordinate system whose z-axis is perpendicular 
to the boundary of the half-space. Let a stamp with a rectangular planform (Fig. 1) be 


